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Dual-Series Solution to Scattering from a
Semicircular Channel in a Ground Plane

M. K. Hinders and A. D. Yaghjian

Abstract—Exact dual-series eigenfunction sclutions, and sim-
ple closed-form low-frequency asymptotic approximations are
determined for the problems of TM and TE scattering from a
semicircular channel in a perfectly conducting ground plane.
The eigenfunction solutions provide benchmarks for channel
scattering, and the low-frequency solutions can be used to
determine directly incremental length diffraction coefficients for
narrow channels.

LTHOUGH the scattering of plane waves from semicir-
cular protuberances [1] and slits [2] have long been
solved exactly, neither an exact eigenfunction solution nor a
closed-form low-frequency solution exists, as far as we are
aware, to the problem of scattering from a channel in a
ground plane. We thus present in this letter dual-series
eigenfunction solutions, and their low-frequency asymptotic
approximations in closed form, to the 2-D problems of TM
and TE scattering by a semicircular channel in a ground
plane [3]. (A series representation for the low-frequency TM
solution was found previously by Sachdeva and Hurd [4].) As
shown in Fig. 1, a normally incident plane wave makes an
angle o™ with the positive X axis, the channel along the z
axis is of radius r = @, and the direction of scattering is
given by the angle ¢ with the x axis. Harmonic time
dependence of the form e’’ is assumed throughout.
For the incident TM plane wave, the z-component of the
electric field can be expanded in cylindrical waves as [5]
E;nc = elkrcos(dz—da Y — Z

n=—®

", (kr)ene ™) (1)

The scattered field for r = @ may be expressed as the sum of
two parts, the reflected TM plane wave given by

(=]
Eref — _eikrcos(d>+¢“‘°) - _ Z
K4

n=—oo

i"J,(kr)em®+e™ (2)
and the ‘‘diffracted’’ field expanded with Hankel functions as

(3)

where the A, are the unknown modal coefficients. The
diffracted field vanishes on the ground plane so that the total
field for r = a also vanishes there.

In the interior region (» =< a) the electric field can be

E¥ = Z A, H®(kr)sin (n¢)

(r=a)),
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Fig. 1. Geometry of semicircular channel in perfectly conducting ground

plane.

expanded with Bessel functions as
oo

Zo J,(kr)[ B, cos (n¢) —

n=

(Co=0) (4)

where B, and C, are two more sets of modal coefficients
which, along with A4, , will be determined from the boundary
conditions at » = a. From Maxwell’s equations we write the
¢-component of the magnetic field as H, = (1/iwp)d E,,
so that the boundary conditions at r = a of zero tangential
electric field on the channel (7 < ¢ < 27) and continuous
fields across the aperture circular (0 < ¢ < 7) become

EmM = C, sin (nqb)]

(r=a),

Z B,J,(ka) cos (n¢) + Z C,J,(ka)sin (n¢) =

n=0
(1r<q5<27r),

B, J(ka) cos (ng) + é C, 7 (ka) sin (nd)

TMS Z‘;Mg

[41”./ (ka) sin (ng™) + A, H> (ka)] sin (ne)

0< ¢ <),

™8

B, J,(ka) cos (n¢) + i C,J;(ka) sin (no)
n=1

S
il
o

Ms

[41”J,’,(ka) sin (n¢™) + A,H® (ka)]| sin (n¢)

0<o<7). (5

By making a simple change of variables ¢ = ¢ — 7 in the
first equation, each equation in (5) can be written in the form

3
i

io g.(ka) cos (ne) = Zo; J.(ka)sin (no)

©0<é<m). (6)

Partial orthogonality of the sinusoids over 0 to 7 gives the
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following relations between f,, (ka) and g,(ka)

*  mg,(ka)
ka)l - — —_—
fm( )‘m—0,2.4 T nsias mz _ nz

mg ,(ka)

i ———- ()

These relations can then be used to derive the following two
equations
o B T
n=0 m - n 2
(n—modd)

[ Fo(ka) HE (ka) J,,(ka)

_ I (ka) HO (ka)J (ka)]}

- % i"J, (ka)sin (m¢™),  m=1,2,3---,
(n=10dd)
—4i'J,(ka) sin (1¢™) % ;
H/*(ka)
[=1,2,3--. (8)

The first can be solved numerically to give the B,, and these
can be inserted in the second to give A,. This constitutes an
eigenfunction solution of our TM problem.

For narrow channels (small ka) we can employ the small-
argument approximations for the cylinder functions to write
(8) as

it b, 3m+n
;;o (m2 -n )[ 2 }
(n—m odd)
T .
=i5kasin¢>mcc‘51m m=1,2,3-+-
(ka/2)' | (kef2)t
A, =41l o i~ sin (1o™)
°° 21b,
S (2 2) I=1,2,3--. (9)
n=0 I“—n
(n—10dd)

Solving (9) numerically, we then find the following closed-
form expression for TM scattering from a small semicircular
channel

—ikr

e
0.185V27 (ka)’ eB3™ /4 ——
o (1 2E k)

dif
E; ~
r— r

sin ¢ sin ¢™°

(ka small),

(10)

which has the same functional form as that for TM scattering
from a narrow slit in a conducting plane [2], [6]. In the
expression (10) we have found the constant 0.185 by a single

numerical matrix inversion since (9) shows that for narrow

channels the kg-dependence is removed from the matrix, and
only the coefficient A, is needed to determine the diffracted
fields.

The transverse electric case can be solved in a similar
fashion by expressing z-components of the incident, re-
flected, and diffracted H-fields as

Hzinc — eikrcos(d)—d)"‘c): i

n=—oo

i"J,(kr)ein =™

oo

tkrcos (p+¢") _ Z

= —0o

Hzref =e an(kr)em(¢+¢‘“°)

H dif _

ZA’

and the magnetic field in the interior region as

HP(kr)cosng  (r=a),

(11)

Hi® = %" J (kr)] B, cos(ne) + C,sin(ne)],
n=0
(Cy=0) (r=a), (12)
where A’,, B;, and C;, are the unknown modal coefficients to

be determined from the boundary conditions. Proceeding as
in the TM case, we find

had nC,
> (——-——){J’(ka)~l—ka
n=1 ‘I’l - m

(n—m odd)

[ o ka) HP (ka) J,,( ka)
—J,(ka) HO'(ka) T, a)]}

= ni"J},(ka) cos (me¢™

- [i i (nC’J’ ka)))

T n=13,5

m=0,1,2--,

—2Jy(ka) | —5——
9 ]Hé”’(ka)

8§ = (C,J(ka
a=|= % (T(T))—M'Jxka)cos(wm)}
T n=1 n—1
(n—1o0dd)
! I=1,2,3 13
H(ka) 7 )

The first of (13) allows us to solve for the C,
then be substituted into the others to get A’.
For small ka (13) can be shown to reduce to

which can

i ne, 3n+m _ e 5
= {7 COS ¢

ot n2 _ m2 2 im

(n—m odd)

m=1,2,3+--,

> ¢ = —2w(ka/2)*(1 - (ka)’ In(ka)) m =0,
n=1,3,5
r_ 2 1 2
Ay = — (ka) [1 = 3(ka)* In (ka)],
, (kaj2)' |8 = nic,
SR TR PP 3} n2~12)
(n—1[odd)
J )
—4111Tcos (I ) 1=1,2,3---, (14)
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Fig. 2. Backscatter width/\ vs. scatter angle, @ /N = 0.1; — eigenfunc-
tion, - - moment method, - - - low frequency.

from which is found the closed-form expression of the
diffracted magnetic field for TE scattering from a narrow
semicircular channel

—ikr

. e
HY o« 2x(k 2 3w /a
frow w (ka)"e Vkr

(ka)®
4

-1 In (ka) — 0.185cos ¢ cos o™ [. (15)
The leading term in (15) differs from the 1/In(ka) depen-
dence of the leading term for TE scattering from a thin slit in
a conducting plane [2], [6]. Note that we have once again
found the numerical constant 0.185 via a single numerical
matrix inversion, since (14) shows that the ka-dependence is
removed from the matrix for narrow channels.

It has been shown recently [7] that the constants multiply-
ing the TM magnetic dipole field in (10) and the TE electric
dipole field in (15), are the same not just for the semicircular
channel (where they are equal to 0.185) but for any cylindri-
cal channel or ridge in a ground plane. Also the leading term
in the TE low-frequency diffracted far magnetic field is
always given by
e~ ikrm/4)

A,
Vkr

where A is the area of the channel or ridge [7]. Since the
small-channel results show the k-dependence explicitly, they

+k%\/2/7
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Fig. 3. Backscatter width/\ vs. scatter angle, a/\ = 2; — eigenfunc-
tion, - - moment method.
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Fig. 4. Total scattering width/\ vs. ka, ¢"™° = 90°: — eigenfunction,
---low frequency.
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can be generalized immediately to obliquely incident plane
waves, and be used to determine incremental length diffrac-
tion coeflicients [6].

Plots of the backscattering width versus angle computed
from the TM and TE eigenfunction solutions, (8) and (13), as
well as from a numerical moment-method integral equation
solution [9], are shown in Figs. 2 and 3. The low-frequency
approximations, (10) and (15) are also plotted in Fig. 2. The
eigenfunction and moment-method solutions agreed well at
all computed angles and frequencies. The low-frequency
solutions are a good approximation to the exact eigenfunction
solutions for @ /A smaller than about 0.1.

Fig. 4 shows the fofal scattering width versus ka in the
TM and TE cases computed from the eigenfunction solutions
and the low-frequency approximations. The clearly defined
resonances displayed in Fig. 4 are not present in the total
scattering width of the slit or the semicircular ridge on a
ground plane.
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