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Dual-Series Solution to Scattering from a

Semicircular Channel in a Ground Plane
M. K. Hinders and A. D. Yaghjian

Abstract—Exact dual-series eigenfunction solutions, and sim-
ple closed-form low-frequency asymptotic approximations are

determined for the problems of TM and TE scattering from a
semicircular channel in a perfectly conducting ground plane.
The eigenfunction solutions provide benchmarks for channel
scattering, and the low-frequency solutions can be used to

determine directly incremental length diffraction coefficients for

narrow channels.

A LTHOUGH the scattering of plane waves from semicir-

cular protuberances [1] and slits [2] have long been

solved exactly, neither an exact eigenfonction solution nor a

closed-form low-frequency solution exists, as far as we are

aware, to the problem of scattering from a channel in a

ground plane. We thus present in this letter dual-series

eigenfunction solutions, and their low-frequency asymptotic

approximations in closed form, to the 2-D problems of TM

and TE scattering by’ a semicircular channel in a ground

plane [3]. (A series representation for the low-frequency TM

solution was found previously by Sachdeva and Hurd [4].) As

shown in Fig. 1, a normally incident plane wave makes an

angle din’ with the positive x axis, the channel along the z

axis is of radius r = a, and the direction of scattering is

given by the angle @ with the x axis. Harmonic time

dependence of the form eiat is assumed throughout.

For the incident TM plane wave, the z-component of the

electric field can be expanded in cylindrical waves as [5]

E~ = e’~rcos(o-d’nc) = ~ i“Jn(kr)ei”(+-@i”’) (1)
~.–c.a

The scattered field for r 2 a maybe expressed as the sum of

two parts, the reflected TM plane wave given by

Ere~ = _ ~ikr ..s (@+@’nc) = _
~ in~n(lcr)ein(~+d”c’ (2)z

and the “diffracted” field expanded with Hankel functions as

- ~~1 A.~J2)(kr) sin (no) (r a a), (3)
E?. W

where the ~. are the unknown modal coefficients. The

diffracted field vanishes on the ground plane so that the total

field for r > a also vanishes there,

In the interior region (r < a) the electric field can be
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Fig. 1. Geometry of semicircular channel

plane.

expanded with Bessel functions as

@t . j-j, .ln(kr)[llncos (nr#l)-

in perfectly conducting ground

Cn sin (n@)]

(CO = O) (r= a), (4)

where Bn and C~ are two more sets of modal coefficients

which, along with A., will be determined from the boundary

conditions at r = a. From Maxwell’s equations we write the

+-component of the magnetic field as H@ = (1 /i~~)d,EZ,

so that the boundary conditions at r = a of zero tangential

electric field on the channel (r < 1$< 2x) and continuous

fields across the aperture circular (O < + < x) become

~ Bn.ln(ka) cos (n@) + ~ C. Jn(ka) sin (n@) = O
~=o n=l

(7r<4<2m),

~ BnJ.(ka) cos (n@) + ~ Cn.l.(ka) sin (rz4)
~=o n=l

w

= ~~1 [4inJ.(ka) sin (rz4inc) + A. H~2)(ka)] sin (n4)

(O<4<T),

~ BnJ;(ka) cos (724)+ ~~1CnJ~(ka) sin (n4)
n=o

m

= ~ [4i”J;(ka) sin (n@’nc) + AnH~2)’(ka)] sin (n4)

(o<@< 7r). (5)

By making a simple change of variables @+ @ – r in the

first equation, each equation in (5) can be written in the form

Partial orthogonality

n=l

(0<0< =). (6)

of the sinusoids over O to m gives the
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following relations between ~~( lea) and gm(/ca)

mgn ( ka)
f~(ka) \ rrz=0,2.4 = : ~=~3,5 ~~ _ ~2

‘gq . (7)fm(~~)ln=l,3,5 = : ~=;,, m2

,- .

These relations can then be used to derive the following two

equations

m

=( Bn

){
Jn(ka) + i; ka

~=() m2 _ ~2

(n-m odd)

o [ Jn(ka)H#)’(ka)J~ (ka)

-.l;(ka)H#(ka) J~(ka)] }

—— ~ im.l~(ka) sin (n2q5’nC), m=~,z,y...,

11
– 4i1J1( ka) sin ( l+inc)

@2)( ka) ‘

1 =1,2,3””.. (8)

The first can be solved numerically to give the B. and these

can be inserted in the second to give A ~. This constitutes an

eigenfunction solution of our TM problem,

For narrow channels (small ka) we can employ the small-

argument approximations for the cylinder functions to write

(8) as

SO (m2:.2)[3m2+nl
(n–modd)

= i; kasin+inc~l~ m=l,2,3 ”.”,

[

A1=4ii ‘ka/2)’ mi ‘ka’’2)’ sin(l~inc)
1! 1!

—

so (a )]
1 =1,2,3.”.. (9)

(n–lodd)

Solving (9) numerically, we then find the following closed-

form expression for TM scattering from a small semicircular

channel

e —ikr
qt-

~ --m 0.185 &(ka)2ei3T14—
G

sin $ sin $’nc

(kasmall), (10)

which has the same functional form as that for TM scattering

from a narrow slit in a conducting plane [2], [6]. In the

expression (10) we have found the constant 0.185 by a single

numerical matrix inversion since (9) shows that for narrow

channels the ka-dependence is removed from the matrix, and

only the coefficient zl, is needed to determine the diffracted

fields.

The transverse electric case can be solved in a similar

fashion by expressing z-components of the incident, re-

flected, and diffracted H-fields as

IZy = eikrco’(o-o’”c)= ~ i“Jn(kr)ein(o-dl’c)
n.—cc

Hff = e’krcOs(@++l”c)= f i“J~(kr)e’n(o+4’”c)
~.—cv

- ~~oA~H~2)(kr)cos .4 (r z a), (11)
@l_ “

and the magnetic field in the interior region as

~ Jn(kr)[B; cos (n@)+ C; sin (no)],~$t= m

~=o

(C: = O) (r 5 a), (12)

where AL, B: and C: are the unknown modal coefficients to

be determined from the boundary conditions. Proceeding as

in the TM case, we find

(n ~-m ~dd)

- [ J:(ka)H#(ka) .l&(ka)

-Jn(ka)H#’(ka) J~(ka)] }

= ~i~.l~(ka) cos ( rn@inc) m=(), 1,2 ...,

1
1 = 1,2,3....

H/2)’( ka)
(13)

The first of (13) allows us to solve for the C;, which can

then be substituted into the others to get A;.

For small ka (13) can be shown to reduce to

(n –“m :dd)

m=l, T, y,...,

~ c;= -2r(ka/2)2(1 - ~(ka)21n(ka)) m = O,
n=l,3,5

1! [+jdd)(a~j = ~i (ka/2)’ 8

_41i, (ka/2)’ ~os ~l@,nC)

1!
!

1 = 1,2,3..., (14)
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Backscatter width/h vs. scatter angle, a/X = O. 1; — eigenfunc-

tion, -- moment method, --- low frequency

from which is found the closed-form expression of the

diffracted magnetic field for TE scattering from a narrow

semicircular channel

H?
,Im fi(k~)’ez’mi’ ~

[

; + (ka)2
—. 1~ln(ka) –0.185cosdcos@inc . (15)

The leading term in (15) differs from the l/ln(ka) depen-

dence of the leading term for TE scattering from a thin slit in

a conducting plane [2], [6]. Note that we have once again

found the numerical constant 0.185 via a single numerical

matrix inversion, since (14) shows that the ka-dependence is

removed from the matrix for narrow channels.

Ithasbeen shown recently [7]that the constantsmultiply-

ing the TM magnetic dipole field in (10) and the TE electric

dipole field in (15), are the same not just for the semicircular

channel (where they are equal to O.185) but for any cylindri-

cal channel or ridge in a ground plane. Also the leading term

in the TE low-frequency diffracted far magnetic field is

always given by
e–i(kr+nj4)

hk’~
v% ‘i’

where A is the area of the channel or ridlge [7]. Since the

small-channel results show the k-dependence explicitly, they
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tion. -- moment method.
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can be generalized immediately to obliquely

waves, and be used to determine incremental

tion coefficients [6].
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incident plane

length diffrac-

Plots of the backscattering width versus angle computed

from the TM and TE eigenfunction solutions, (8) and (13), as

well as from a numerical moment-method integral equation

solution [9], are shown in Figs. 2 and 3. The low-frequency

approximations, (10) and (15) are also plotted in Fig. 2. The

eigenfunction and moment-method solutions agreed well at

all computed angles and frequencies. The low-frequency

solutions are a good approximation to the exact eigenfunction

solutions for a/X smaller than about 0.1.

Fig. 4 shows the total scattering width versus ka in the

TM and TE cases computed from the eigenfunction solutions

and the low-frequency approximations. The clearly defined

resonances displayed in Fig. 4 are not present in the total

scattering width of the slit or the semicircular ridge on a

ground plane.

ACKNOWLEDGMENT

M. B. Woodworth programed the computation of the

eigenftmction and low-frequency solutions and plotted the

curves.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

J. W. Strutt (Lord Rayleigh), “On the light dkpersed from fine lines

ruled upon reflecting surfaces or transmitted by very narrow slits, ”
Phil. &fag., vol. 14, p. 350, 1907.

J. J. Bowman, T. B. A. Senior, P. L. E, Uslenghi, Electromagnetic
and Acoustic Scattering by Simple Shapes. Amsterdam: North-
Holland, 1969, ch. 4 and section 1.2.9.
M. K. Hinders, “Scattering of a plane electromagnetic wave from a

semicircular crack in a perfectly conducting ground plane, ” RADC
Tech. Rep., TR-89-12, Apr. 1989.

B. K. Sachdeva and R. A. Hurd, “Scattering by a dielectric-loaded

trough in a conducting plane, ” J. APP1. Phys., vol. 48, no. 4, p.

1473, 1977.

J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill,

1941, ch. 6.
R. A. Shore and A. D. Yagnjian, “Incremental diffraction coefficients

for planar surfaces,” IEEE Trans. Antennas Propagat., VOL 36,

no. 1, p. 55, Jan. 1988.

T. B. Hansen and A. D. Yaghjian, “Low-frequency scattering from

two-dimensional perfect conductors, ” IEEE/ AP-S Syrnp. Dig.,
London, ON, Canada, June 199 1; also Rome Laboratory Tech. Rept,
TR-91-49, Jan. 1991.

—, “Incremental diffraction coefficients for cylinders of arbitrary
cross section: Application to diffraction from ridges and channels in

perfectty conducting surfaces, ” in IEEE/ AP-S Symp. Dig., Lon-

don, ON, Canada, June 1991, pp. 794.

H. Llng, private communication, Dept. Elect. and Comput. Eng.,

Univ. of Texas at Austin, 1990.


